

SOFIA and CCAT - synergies

Hans Zinnecker

SOFIA Science Mission Operations DSI Univ. Stuttgart & NASA-Ames

> CCAT conference Cologne, Germany October 7, 2011

SOFIA and **CCAT** science themes

SOFIA:

ISM in Milky Way and nearby galaxies Star formation and circumstellar disks Outer solar system (asteroids, KBO, occultations) Planetary atmospheres (e.g. Venus, Mars, Pluto)

CCAT:

Distant galaxies ISM in nearby galaxies and Milky Way Star formation and circumstellar disks Outer solar system (asteroids, KBO, etc)

OUTLINE

- Basic information about SOFIA and CCAT (status, transmission, instruments, lambda, spatial resolution)
- Technical similarities and differences (array sizes)
- Complementarity, operation time overlap (2017++)
- Spectroscopic science case examples (gal + extragal)
- Summary (strong synergy: FIR/submm GMC mapping)
- PS. 2nd gen SOFIA and CCAT \rightarrow imaging polarimetry

3

RIT

RIT

Overview of SOFIA

- SOFIA is a 2.7 m (2.5 m effective aperture) telescope in a modified B747SP aircraft, the biggest possible in a B747
 - Optical-mm performance
 - Obscured IR (30-300 μ m) most important
- SOFIA is a joint program between the US (80%) and Germany (20%), both in terms of cost and obs. time
 - -- largest bilateral science project between US and Germany
- Operating altitude
 - 39,000 to 45,000 feet (12 to 14 km)
 - Above > 99% of obscuring water vapor

(C)

- First science flights took place at the end of 2010, continuing
- Mobility: anywhere, anytime (including southern hemisphere)
- Designed for 20 year lifetime, only FIR platform after Herschel for years to come

DŜI

Motivation for Airborne Astronomy

DŜI

215

...

(C):

- For much of the infrared, the Earth's atmosphere blocks all transmission.
 - The problem is water vapor
- If we can get above this water vapor, much more can be observed.

(R-1-T)

(RIT)

SOFIA – The Observatory

DŚI

3

The Telescope Assembly – A Major German Contribution

RIT

CCAT Telescope

Basics

- •Aperture: **25 m**
- Angular Resolution: 3.5" beams @ 350 µm
- -Wavelengths: 350 µm 2.2 mm (200 µm goal)
- \vee FOV: $\geq 20' (1^{\circ})$
- Surface: HWFE < 12.5 µm rms</pre>
- Cost: ~\$110M U.S. (85€ million)

SETI INSTITUTI

Atmospheric Transmission Cerro Chajnantor (5,600 m)

SOFIA instrument suite

- FORCAST
- GREAT
- HIPO
- FLITECAM
- FIFI-LS
- HAWC
- EXES

(

(Õ)

Four Completed 1st Generation Instruments

HIPO High Speed Photometer (on SOFIA)

> FLITECAM Near IR Camera (at Lick observatory)

FORCAST Mid-IR Camera (on SOFIA)

> GREAT Heterodyne spectrometer

> > (on SOFIA)

3

DSI

Instruments in development

HAWC Bolometer Camera

12

USRA

(3)

(R-I-T)

SOFIA's Instrument Complement

器

 $(\begin{tabular}{c})$

DŚI

SETI INSTITUTE

USRA

RIT

GREAT details

dual channel heterodyne spectrometer

L1 ab 1.25-1.50 THz: N+, CO, OD, H2O+, SH L2 ab 1.81-1.91 THz: NH3, OH, CO 16-15, C+ M ab 2.5 THz, 2.7 THz: OH ground state, HD 1-0 H band 4.7 THz: [OI] 63 micron line (2013)

two out of 4 channels can be operated simultan. Spectral resolution: sub km/s, IF bandwidth 1.2 GHz beam=lambda/10 (16" for C+ 158 micron line) upGREAT (funded): 2x7 pixel arrays

DSI

Successful Start of Science Program on SOFIA

DŜI

- Short Science 2
 - Series of 3 flights with GREAT heterodyne spectrometer
 - Completed in April 2011
- Basic Science 1
 - Series of 10 flights with FORCAST midinfrared camera
 - Included Guest Investigator programs solicited from the world astronomical community
 - Flight series completed in June 2011
- Pluto Occultation
 - Successful observation occultation of a background star by Pluto on June 23, 2011.
 - Demonstrates advantage of SOFIA mobility to get to the shadow path at the precise time of the event
- Basic Science 2 and German Science
 Demonstration Time
 - Series of 11 flights with the GREAT instrument
 - Includes substantial Guest Investigator program
 - First flight July 13, 2011

GREAT mounted in SOFIA

RIT

First Science with GREAT (White CII, Green CO)

USRA

(C)

RIT

GREAT dips into cradle of star formation

USRA

The Galactic Center

Radio image of Sgr A, pistol, sickle, filaments and arches

• At right are multicolor infrared images of two regions of the center of the Milky Way made with FORCAST SOFIA (courtesy of T. Herter)

3

SOFIA/FORCAST images at 19.7 (blue), 31.5 (green), 37.1 (red) μm

JSRA

RIT

GREAT Observations at 2.4-2.7 THz

DŜI

- A key capability of SOFIA is to be able to take advantage of new technology.
- The GREAT instrument team, led by Rolf Güsten, has developed a receiver for the 2.4-2.7 THz band.
- Rapidly installed on the GREAT instrument, the first astronomical observations at these frequencies were conducted on July 26 & 29.

RIT

Cold Molecular Hydrogen using HD

(C)

23

FIFI-LS: Far-IR Spectrometer

PI: A. Poglitsch, Max-Planck Institut, Garching alpog@mpe.mpg.de → Krabbe@DSI

Detectors: Dual channel 16 x 25 arrays; $42 - 110 \ \mu m$ (Ge:Ga) $120 - 210 \ \mu m$ (Ge:Ga stressed)

Field of View: 30" x 30" (blue), 60" x 60" (red) R= 1500 - 6000

5 x 5 pixels

Science: Imaging of extragalactic CII & OI

(RIT)

DŚI

SETI INSTITUTE

 (\mathbf{e})

 $(\mathbf{\hat{O}})$

SETI INSTITUTE

RIT

Potential synergies between SOFIA and CCAT

EXAMPLES (southern hemisphere) Carina region (LABOCA) \rightarrow CO, CI, CII dark gas Galactic Center (CMZ, Bolocam) \rightarrow map HD J=1-0 in emission Magellanic Clouds (NANTEN) \rightarrow CI, CII dark gas Antennae (ISO) \rightarrow CO hot spots SED (low-J, high J), shocks Centaurus A (SMBH) \rightarrow central submm/FIR emission, PDR/XDR

CCAT submm/wide-field mapping SOFIA FIR-MIR 2-5 THz mapping 25mCCAT@350micron = 2.5mSOFIA@35micron = 3.5"resolution

absorption spectroscopy towards CenA: CO(CCAT)/HD(SOFIA)

3

DSI

USINEP 3: Characterization of the clouds

A: Sub-mm (870 µm) survey with LABOCA / APEX

DŚI

SETI INSTITUTI

 (\mathbf{e})

 (\mathfrak{S})

(RIT)

B: Herschel observations of the Carina Nebula

 (\mathbf{e})

 $(\mathbf{\hat{o}})$

Galactic Center IR/submm image (Bally)

(C)

SETI INSTITUTE

Excursion to Orion (Becklin's Lemma)

- SOFIA/FORCAST imaging results (ApJL ready to subm)
- What can CCAT do in Orion BNKL (200 micron imaging)?
- THz spectroscopic observations with GREAT next step
- What are the Herschel HIFI results for the Orion region?

20 (Green) and 37 (Red) Micron Data of Orion Nebula

Visible light (HST, C. O'Dell and S. Wong)

Near infrared (ESO, M. McCaughrean) SOFIA mid infrared (SS02)

3-color images of BNKL region 19um, 31um, 37 um

USRA

()

 (\mathfrak{S})

3-color images of Trapezium region

7um, 19um, 37 um

DMRM Deconvolution

USRA

(3)

RIT)

SOFIA Highlights 2011

- April 2011 GREAT Early Science Flights
- May 2011 FORCAST Basic Science Flights
- June 2011 Pluto Occultation Flight
- July 2011 Call for 2nd Generation Instruments
- July 2011 GREAT Basic Science

(C)-

...

- Sept 2011 Deployment to Germany
- Sept 2011 E/PO Event at Andrews AFB
- Sept 2011 Completion of Basic Science (into Nov.)
 - 2nd Generation Instrument Proposals Due
- Nov 2011 Call for Cycle 1 observing proposals (US)
 - Dec 2011 Begin Maintenance Downtime (Seg 3).

DŚI

Oct 2011

Summary

DŜI

- SOFIA program getting into gear!
 - First Science with FORCAST and GREAT was a great success
 - Aircraft handles well, even with door open (unnoticable in flight)
 - Aircraft now cleared to 45,000ft
 - Community science has started with 15 of 18 flights.
 - Successful Occultation of Pluto in June over the Pacific
 - Deployment to Germany and to Washington DC in Sept
 - Call for 2nd instruments due today
- SOFIA will be one of the prime facilities for mid-IR and far-IRastronomy for many years to come

RIT

SOFIA EP/O

- Airborne Astronomy Ambassadors Program Launched
 - All 6 US educators in the first AAA class flew on Basic Science 1 flights
 - Parallel German AAA program flew their first educators during Basic Science 2
- SOFIA was deployed to Germany in mid-September to support the Cologne Air Show September 18, 2011, and to be seen at Stuttgart airport (more than 5000 people)
- SOFIA also had a stopover at Andrew AFB in Washington for viewing by NASA officials etc.

Educators from the first Airborne Astronomy Ambassadors flight. (I-r) Margaret Piper, Lincoln Way High School, Frankfort, III.; Theresa Paulsen, Mellen School District, Mellen, Wis.; and Kathleen Joanne Fredette, Desert Willow Intermediate School, Palmdale, Calif.

SOFIA in the Dryden Aircraft Operations Facility

SETI INSTITUTE

RIT

SOFIA Operations

- Science flights originate from Palmdale California
 - Aircraft operation by NASA Dryden Research Center from the Dryden Aircraft Operations Facility (DAOF)
- Science Center is located at NASA Ames Research Center
 - USRA/DSI responsible for Science Operations on SOFIA
 - Support from Deutsches SOFIA Institut in Stuttgart (DSI)
- World Wide Deployments, including Southern Hemisphere
- SOFIA will ramp up to ~1000 science hours per year (2014)
- SOFIA will support the development of new generations of instruments, promising ever increasing capabilities (call for 2nd generation instruments to be answered by today Oct 7).

DŜI

45

Sample Mission Plan

Occultation by Pluto 2011 June 23

- Observation of Pluto passing in front of a bright star is used to provide highly detailed information about the atmosphere
- Mobility of SOFIA is key to successful observations

3

RIT

JSRA

Motivation for SOFIA

- Infrared transmission in the stratosphere very good: >80% from 1 to 1000 μm
- Resolution and sensitivity is set by the size of the telescope
- Instrumentation: wide complement, rapidly interchangeable, state-of-the art
- Mobility: anywhere, anytime
- Long lifetime
- Outstanding platform to train future Instrumentalists
- SOFIA will have an important role in education and public outreach

3

RIT

(RIT)

Our first science flight

CO(13-12)

(DŠI)

SETI INSTITUT

415

()

 $(\overline{\mathbb{C}})$

Cornell University California Institute of Technology & NASA JPL University of Cologne University of Bonn Canadian university consortium **British Columbia** Calgary Dalhousie McGill **McMaster** Toronto Waterloo Western Ontario University of Colorado Associated Universities, Inc.

Director – Riccardo Giovanelli Project Manager – Jeff Zivick Project Engineer – Steve Padin Project Scientist – Jason Glenn

> Jason Glenn, University of Colorado, Boulder Formation and Development of Molecular Clouds Cologne University, 5 Oct 2011

Telescope

Basics

- Aperture: 25 m
- Angular Resolution: 3.5" beams
 @ 350 µm
- Wavelengths: 350 μm 2.2 mm
 (200 μm goal)
- FOV: ≥ 20′ (1°)
- Surface: HWFE < 12.5 µm rms
- Cost: ~\$110M U.S. (85€ million)

Construction

- Enclosed
- Alt/Az mount with Nasmyth foci
- Active surface with Al tiles and CFRP subframes
- CFRP truss
- Steel elevation structure

Atmospheric Transmission Cerro Chajnantor (5,600 m)³

- 2004 MOU signed between Cornell and Caltech
- 2006 CCAT Feasibility/Concept Study completed
- 2007 Interim Consortium Agreement signed by, including Cornell, Caltech, UK ATC, Colorado
- 2010 U.S. Astro2010 Decadal Survey endorsement:

Recommendations for New Ground-Based Activities—Medium Project

Only one medium project is called out, because it is ranked most highly. Other projects in this category should be submitted to the Mid-Scale Innovations Program for competitive review.

- 2011 CCAT partnership, corporation, and board of directors formed; Engineering Design Phase initiated
- 2013 Scheduled completion of EDP
- 2013 2017 Scheduled construction phase

First-Light Instrumentation

A call for proposals will be circulated to CCAT partners shortly for design studies for first-light instruments, with first-light instrument selection preceding the end of the EDP.

Instruments that have been discussed include

- SWCam: TES or FIR-KID arrays
 - (200), 350, 450, (620) µm bands
 - Possibly 50,000 0.5f λ pixels
- LWCam: MKID array

CCAT

- (750), 850, 1100, 1300, 2100 µm bands
- Possibly 3k 4-color (1-2)f λ pixels
- Broadband, medium resolution multiobject spectrometer using ZEUS or Z-Spec technology
- Heterodyne spectrometer arrays

Galaxies & the Cosmic Far-Infrared Background at Submillimeter

Wavelengths

- 1. Submm observations are necessary to measure the bolometric luminosities of starforming galaxies
- 2. Only the most luminous galaxies have been detected so far
 - 10% of CFIRB resolved directly with *Hersche*l
 - 50% resolved by P(D)
 - → Parameterized number count models derived to a depth of 2 mJy/beam

HerMES Lockman Hole North Oliver et al. (2010, 2011)

Simulated maps of the same patch of sky based on *Herschel* counts

7

 $350 \ \mu m$

Measuring the ULIRG Luminosity Function to $z \ge 5$

Courtesy R. Chary, based on Chary & Elbaz

- At 5σ_{conf} CCAT will detect ULIRGs to z ≈ 6.3, 5.5, and 0.7, respectively, at λ = 350, 450, and 850 μm
- The deepest CCAT surveys will match Spitzer 24 µm for z < 2 and surpass for z > 2
- Halo masses can be measured via clustering of galaxies almost two orders of magnitude fainter than *Herschel* [S_{250µm} > 30 mJy reside in dark matter halos with M > (5±4)x10¹² M_{sun}]

High-z galaxies will have low 350 to 850 μ m flux density ratios ("350 μ m dropouts") and may enable us to probe the epoch of reionization

 $>5\sigma$ 850 µm detection, 350 µm nondetections

Spectroscopy: Redshifts and ISM Astro-physics

- Thousands of galaxies will be detectable per sq. deg. spectroscopically
- Broadband MOS capability required
- Atomic fine-structure lines, line-continuum ratios, and CO ladder will measure
 - Redshifts
 - Gas mass reservoirs
 - Gas cooling rate
 - Gas excitation mechanisms

- CCAT will resolve clusters better than 10 m class telescopes while not resolving out diffuse signal
- Broad submm-to-mm spectral coverage and good angular resolution will enable separation of thermal SZ, kinetic SZ, dusty galaxies, and CMB
- N(M, z) help constrain cosmological parameters, such as w₀
- Comparison to simulations will improve scaling relations for mass estimates

Questions to Consider

- What spectral lines are most important for mapping?
- What priority should be assigned to the bands?

Continuum sensitivities from Table 4.3 of the CCAT Feasibility/Concept Design Study (2006)

λ (μm)	PWV (mm)	NEFD (mJy s ^{1/2})
200	0.3	150
350	0.4	14
450	0.5	14
620	0.5	16
740	0.7	8.7
865	1.0	5.8
1.18	1.0	1.7
1.4	1.5	2.9
2.0	1.5	2.3

Jason Glenn, Unveiling the Far-IR and Sub-mm Extragalactic Universe

Spectroscopy Assumptions

- Number counts: Lagache et al., updated with *Herschel* (Bethermin, et al., 2010)
- 0.4 mm PWV
- Detectability: 3o per line in 10 hours (with chopping)
- 1σ:
 - 1.0x10⁻²⁰ W m⁻²
 - 6.4x10⁻²¹ W m⁻²
 - 1.0x10⁻²¹ W m⁻²
 - 5.7x10⁻²² W m⁻²
- CO line luminosities and L_{CO}/L_{FIR} based on M82 (Panuzzo et al.); ~0.5x(L_{CO}/L_{FIR}) observed for *Herschel* high-z submm galaxies
- $L_{[CII]}/L_{FIR} = 10^{-3}$

Jason Glenn, Unveiling the Far-IR and Sub-mm Extragalactic Universe

Measuring Redshifts and Characterizing Interstellar Media

Atomic fine-structure and molecular lines enable z to be measured and T, n, M_{gas}, and G to be measured and source of excitation to be identified

- G: 400- 5,000
- n: 10³ 10⁴ cm⁻³
- Starburst-dominated to AGN-dominated L_[CII]/ L_{FIR} ~ 8

v (km/sec)

ZEUS CSO Stacey and Hailey-Dunsheath, et al.

